A Simple Address Book

This is an example from an 00D textbook. The goal of the exercise is to have you use and think about
the OO design process. In particular,

* What kinds of decisions get made?

* When do different kinds of decisions get made?

* What criteria are used to make design decisions?

* How the decisions are communicated to stakeholders?

Exercise 1: Is this a good design

Walk through the handout to understand how the design is derived. You should understand how
use-case-driven OO design works:

* Walk through the design’s class diagram and UML class specifications to understand the
structure and function of the design

* Discuss the good and bad points of the design to arrive a team judgment

* Justify your answer: what is good about it (or bad) and why?

Using these Pages

Probably the best way to start using these pages is to begin with the requirements and work through
the entire analysis, high-level design, and detailed design process.

1.

Begin with the Requirements and User Interface document.

This exercise starts with a statement of the overall software requirements, without attempting to
discuss the process of actually arriving at them.

Then view the Use Cases and Further Analysis.

Object Oriented Analysis typically begins by identifying the use cases that follow from the
requirements, and detailing a flow of events for each. Further analysis identifies the key classes
that are suggested by the use cases, and considers how each use case can be carried out by an
interaction between objects belonging to these classes.

o The Use Case document has a Use Case Diagram and a series of flows of events, one for
each use case. Each use case also has a link to a Sequence Diagram (part of the Design
phase) that shows how it is realized; these links can be followed while studying the
design phase to see how the analysis phase flows into the design phase.

o The Further Analysis document deals with both the "big picture" and the details of the
various use cases. The former is provided by an Analysis Class Diagram, with each class
having a link to its CRC card; the latter by a discussion of how the key objects would
need to interact in order to implement the use case.

These two documents represent two different ways of viewing the overall system, which
continue into the next phase. The Use Case document presents a use-case centric view of the
system, focusing on the specific functions it provides. The Further Analysis document presents a
class centric view of the system, focusing on how will be built.

This example uses CRC Cards and Sequence Diagrams for high level Design. There are certainly
other tools that might be used - e.g. the ATM Example referred to above makes use of
Collaboration Diagrams and State Charts as well.

o The responsibilities of each class that arise from the use cases are recorded on a CRC
card for each class. The CRC cards could be created by "walking through" each use case,
assigning the responsibility for each task to some class.

o There is a Sequence Diagram for each use case, showing how the use case is realized by
interaction of the major objects.

o A Class Diagram shows how the various classes are related to one another. It also shows
additional classes that were "discovered" during the process of creating the Sequence
Diagrams - i.e. classes needed to actually build the system, though not evident in the
original analysis.

Requirements Statement

The software to be designed is a program that can be used to maintain an address book. An address
book holds a collection of entries, each recording a person's first and last names, address, city, state,
zip, and phone number.

It must be possible to add a new person to an address book, to edit existing information about a
person (except the person's name), and to delete a person. It must be possible to sort the entries in
the address book alphabetically by last name (with ties broken by first name if necessary), or by ZIP
code (with ties broken by name if necessary). It must be possible to print out all the entries in the
address book in "mailing label" format.

It must be possible to create a new address book, to open a disk file containing an existing address
book to close an address book, and to save an address book to a disk file, using standard New, Open,
Close, Save and Save As ... File menu options. The program's File menu will also have a Quit option to
allow closing all open address books and terminating the program.

The initial requirements call for the program to only be able to work with a single address book at a
time; therefore, if the user chooses the New or Open menu option, any current address book will be
closed before creating/opening a new one. A later extension might allow for multiple address books
to be open, each with its own window which can be closed separately, with closing the last open
window resulting in terminating the program. In this case, New and Open will result in creating a
new window, without affecting the current window.

The program will keep track of whether any changes have been made to an address book since it was
last saved, and will offer the user the opportunity to save changes when an address book is closed
either explicitly or as a result of choosing to create/open another or to quit the program.

The program will keep track of the file that the current address book was read from or most recently
saved to, will display the file's name as the title of the main window, and will use that file when
executing the Save option. When a New address book is initially created, its window will be titled
"Untitled"”, and a Save operation will be converted to Save As ... - i.e. the user will be required to
specify a file.

User Interface

Because this is to be a "standard GUI" style application, some attention needs to be given to the user
interface at this point. A user interface like the following might be adopted. Not shown in the screen
shot is a File menu with New, Open, Close, Save, Save As ..., Print, and Quit options. For the "Edit" and
"Delete" buttons, the user must first select a person in the scrolling list of names, and then can click
the appropriate button to edit/delete that person.

0006 Wenham Zoo

File
'Anthony Aardvark |
Boris Buffalo m
Charlene Cat
Donna Dog A
Emily Elephant v
£ N\ £

Add Edit) { Delete) { Sort by name) { Sort by ZIP)

Use Cases for a Simple Address Book

In the following, use cases are listed in the natural order that a user would think of them. In the
actual File menu, items that correspond to the various use cases will be listed in the traditional order,
which is slightly different.

Address Book Application

Add a Person

Edit a Person

i

Delete a Person

\‘

Sort Entries by Name

7IN

Sort Entries by ZIP

i

|

User

Create New Address Book > .,
e, «@Xtend»

«extend»™

Open Existing Address BooR e,
COffer to Save Change
Save Address Book il ,f”ﬁ
«include» -7

l

< «include»

Save Address Book As

Quit Program N

_~extend»

Flows of Events for Individual Use Cases

Add a Person Use Case

The Add a Person use case is initiated when the user clicks the "Add" button in the main window. A
dialog box appears, with title "New Person", containing fields for the user to fill in the new person's
first and last names and other information. The box can be dismissed by clicking either "OK" or
"Cancel". If the "OK" button is clicked, a new person is added to the end of the address book, and the
person's name is added to the end of the list of names in the main window. If the "Cancel"” button is
clicked, no changes are made either to the address book or to the main window.

Edit a Person Use Case

The Edit a Person use case is initiated when the user either highlights a name in the list of names in
the main window and then clicks the "Edit" button, or the user double-clicks a name. In either case, a
dialog box, with title "Edit person's name", appears containing current information about the person
selected, (except the person's name, which appears only in the title). The user can then edit the
individual fields. The box can be dismissed by clicking either "OK" or "Cancel". If the "OK" button is
clicked, the entry in the address book for the selected person is updated to reflect any changes made
by the user. If the "Cancel” button is clicked, no changes are made to the address book.

Delete a Person Use Case

The Delete a Person use case is initiated when the user highlights a name in the list of names in the
main window and then clicks the "Delete" button. A dialog box appears, asking the user to confirm
deleting this particular individual. The box can be dismissed by clicking either "OK" or "Cancel". If the
"OK" button is clicked, the entry in the address book for the selected person is deleted, and the
person's name is deleted from the list of names in the main window. If the "Cancel" button is clicked,
no changes are made either to the address book or to the main window.

Sort Entries by Name Use Case

The Sort Entries by Name use case is initiated when the user clicks the Sort by Name button in the
main window. The entries in the address book are sorted alphabetically by name, and the list in the
main window is updated to reflect this order as well.

Sort Entries by ZIP Use Case

The Sort Entries by ZIP use case is initiated when the user clicks the Sort by ZIP button in the main
window. The entries in the address book are sorted by zip code, and the list in the main window is
updated to reflect this order as well.

Print Entries Use Case

The Print Entries use case is initiated when the user chooses "Print" from the File menu. A save file
dialog is displayed, and the user is allowed to choose a file to print the labels to. (If the user cancels
the file dialog, the Print operation is canceled.) The current contents of the address book are written
out to the specified file (in their current order) in "mailing label" format. No information maintained
by the program is changed.

Create New Address Book Use Case

The Create a New Address Book use case is initiated when the user chooses "New" from the File
menu. If the current address book contents have been changed since the last successful New, Open,
Save, or Save As ... operation was done, the Offer to Save Changes extension is executed. Unless the
user cancels the operation, a new empty address book is then created and replaces the current
address book. This results in the list of names in the main window being cleared, the current file
becoming undefined, and the title of the main window becomes "Untitled". (NOTE: These conditions
will also be in effect when the program initially starts up.)

Open Existing Address Book Use Case

The Open Existing Address Book use case is initiated when the user chooses "Open" from the File
menu. If the current address book contents have been changed since the last successful New, Open,

Save, or Save As ... operation was done, the Offer to Save Changes extension is executed. Unless the
user cancels the operation, a load file dialog is displayed and the user is allowed to choose a file to
open. Once the user chooses a file, the current address book is replaced by the result of reading in the
specified address book. This results in the list of names in the main window being replaced by the
names in the address book that was read, the file that was opened becoming the current file, and its
name being displayed as the title of the main window. (If the user cancels the file dialog, or
attempting to read the file results in an error, the current address book is left unchanged. If the
cancellation results from an error reading the file, a dialog box is displayed warning the user of the
error.)

Save Address Book Use Case

The Save Address Book use case is initiated when the user chooses "Save" from the File menu. (The
Save option is grayed out unless changes have been made to the address book since the last New,
Open, Save, or Save As ... operation was done.) If there is a current file, the current address book is
saved to this file. (If attempting to write the file results in an error, a dialog box is displayed warning
the user of the error.) If there is no current file, the Save Address Book As .. use case is done instead.
In all cases, the current address book and window list are left unchanged.

Save Address Book As ... Use Case

The Save Address Book As ... use case is initiated when the user chooses "Save As ..." from the File
menu. (The Save As ... option is always available.) A save file dialog is displayed and the user is
allowed to choose the name of a file in which to save the address book. (If the user cancels the file
dialog, the Save As ... operation is canceled.) The current address book is saved to the specified file,
and the file to which it was saved becomes the current file and its name is displayed as the title of the
main window. (If attempting to write the file results in an error, a dialog box is displayed warning the
user of the error, and the current file and main window title are unchanged.) In all cases, the current
address book and window list are left unchanged.

Quit Program Use Case

The Quit Program use case is initiated when the user chooses "Quit" from the File menu, or clicks the
close box for the main window. In either case, if the current address book contents have been
changed since the last New, Open, Save, or Save As ... operation was done, the Offer to Save Changes
extension is executed. Unless the user cancels the operation, the program is terminated.

Offer to Save Changes Extension

The Offer to Save Changes extension is initiated from within the Create New Address Book, Open
Existing Address Book, or Quit program use cases, if the current address book has been changed
since the last successful New, Open, Save, or Save As ... operation was done. A dialog box is displayed,
informing the user that there are unsaved changes, and asking the user whether to save changes, not
save changes, or cancel the operation. If the user chooses to save changes, the Save Address Book Use
Case is executed (which may result in executing the Save Address Book As ... Use Case if there is no
current file). If the user chooses not to save changes, the original operation is simply resumed. If the
user chooses to cancel (or cancels the save file dialog if one is needed), the original operation is
canceled.

Analysis

An initial reading of the use cases suggests that the following will be part of the system.

User

A single entity object representing the current address book that the program is working
with (AddressBook).

An arbitrary number of entity objects, each representing one of the people that are in the
current address book (Person).

A boundary object representing the interface between the address book system and the
human user (AddressBookGUI).

A boundary object representing the interface between the address book system and the file
system on disk (FileSystem).

A controller object that carries out the use cases in response to user gestures on the GUI
(AddressBookController). (For a problem of this small size, a single controller is sufficient.)

FileSystem

AddressBookController

AddressBookGUI

AddressBook Person

The various use cases work with these objects, as follows:

The Add a Person Use Case involves getting the new information from the user, and then
telling the AddressBook object to add a new person with this information to its collection
The Edit a Person Use Case involves displaying the current information about the desired
person (obtained from the AddressBook), then allowing the user to enter new information
for the various fields, then telling the AddressBook object to make the changes.

The Delete a Person Use Case involves asking the user to confirm deletion, and then telling
the AddressBook object to remove this person from its collection.

The Sort Entries by Name Use Case involves telling the AddressBook object to rearrange its
collection in order of name.

The Sort Entries by ZIP Use Case involves telling the AddressBook object to rearrange its
collection in order of ZIP.

The Create New Address Book Use Case involves creating a new AddressBook object.

The Open Existing Address Book Use Case involves getting a file specification from the user,
and then telling the FileSystem object to read in an AddressBook object from this file.

The Save Address Book Use Case involves determining whether or not the current
AddressBook object has a file it was last read from / saved to; if so, telling the FileSystem
object to save the current AddressBook object to this file. (If not, the Save Address Book As ...
Use Case is done instead.)

The Save Address Book As ... Use Case involves getting a file specification from the user, and
then telling the FileSystem object to save the current AddressBook object to this file.

The Print Address Book Use Case involves telling the AddressBook object to print out its
collection in order.

(The Quit Program Use Case does not involve any of the other objects)

(The Offer to Save Changes Extension may involve performing the Save Address Book Use
Case.)

CRC Cards for the Address Book Example

Responsibilities are assigned to the various classes based on the use of the model-view-controller
design pattern. The two entity classes (AddressBook and Person) serve as the model. The GUI class
(AddressBookGUI) serves as the view. The controller class (AddressBookController) serves, of
course, as the controller.

The view (AddressBookGUI) needs to be made an observer of the model (specifically, AddressBook)
so that it always reflects the current state of the model - specifically, the list of names, the title, and its

saved/needs to be saved status.

Using CRC cards to assign responsibilities to various classes for the tasks required by the various use
cases leads to the creation of the following cards.

* (lass AddressBook

* (Class AddressBookController
e (Class AddressBookGUI

* (lass FileSystem

* (lass Person

Class AddressBook

The CRC Cards for class AddressBook are left as an exercise to the student

Class AddressBookController

The basic responsibility of an AddressBookController object is to carry out the various use cases.

Responsibilities Collaborators

Allow the user to perform the Add a Person Use Case AddressBook
Allow the user to perform the Edit a Person Use Case AddressBook
Allow the user to perform the Delete a Person Use Case AddressBook
Allow the user to perform the Sort Entries by Name Use Case AddressBook
Allow the user to perform the Sort Entries by ZIP Use Case AddressBook
Allow the user to perform the Create New Address Book Use Case AddressBook
Allow the user to perform the Open Existing Address Book Use Case FileSystem

Allow the user to perform the Save Address Book Use Case ?33;;::2301{
Allow the user to perform the Save Address Book As ... Use Case FileSystem

Allow the user to perform the Print Entries Use Case AddressBook

Perform the Offer to Save Changes Extension when needed by another

Use Case AddressBook

Class AddressBookGUI

The basic responsibility of a GUI object is to allow interaction between the program and the human
user.

Responsibilities Collaborators
Keep track of the address book object it is displaying

Display a list of the names of persons in the current address book AddressBook

Display the title of the current address book - if any AddressBook

Maintain the state of the "Save" menu option - usable only when the

address book has been changed since the last time it was opened / AddressBook

saved.

Allow the user to request the performance of a use case AddressBookController

Class FileSystem

The basic responsibility of a FileSystem object is to manage interaction between the program and the
file system of the computer it is running on.

Responsibilities Collaborators
Read a stored address book from a file, given its file name AddressBook
Save an address book to a file, given its file name AddressBook

Class Person

The basic responsibility of a Person object is to maintain information about a single individual.

Responsibilities Collaborators

Create a new object, given an individual's name, address, city, state,
ZIP, and phone

Furnish the individual's first name

Furnish the individual's last name

Furnish the individual's address

Furnish the individual's city

Furnish the individual's state

Furnish the individual's ZIP

Furnish the individual's phone number

Update the stored information (except the name) about an individual

Class Diagram for the Address Book Example

Shown below is the class diagram for the Address Book Example. To prevent the diagram from
becoming overly large, only the name of each class is shown - the attribute and behavior
"compartments" are shown in the detailed design, but are omitted here.

The diagram includes the classes discovered during analysis, plus some additional classes discovered
during design. (In a more significant system, the total number of classes may be about five times as
great as the number of classes uncovered during analysis.)

* AddressBookApplication - main class for the application; responsible for creating the
FileSystem and GUI objects and starting up the application.

* MultilnputPane - a utility class for reading multiple values at a single time. (Design not
further documented, but javadoc is included.)

* Person.CompareByName - Comparator for comparing two Person objects by name (used for
sorting by name).

* Person.CompareByZip - Comparator for comparing two Person objects by zip (used for
sorting by name).

The following relationships hold between the objects: AddressBook

Application

* The main application object is responsible for
creating a single file system object and a single
controller object.

* The file system object is responsible for saving 1
and re-loading address books

* The controller object is responsible for creating
a single GUI object.

* The controller object is responsible for initially
creating an address book object, but the GUI is
henceforth responsible for keeping track of its 1 1 1
current address book - of which it only has one
at any time. FileSystem

* The GUI object and the address object are
related by an observer-observable relationship,

AddressBook i MultiInput
Controller Pane

AddressBook
GUI

so that changes to the address book content lead Person.
to corresponding changes in the display 3 1 P ;222“"83"
* The address book object is responsible for : //

creating and keeping track of person objects, of AddressBook [~

which there can be many in any given address N Person.

book. ‘\\ CompareBy
| ZIP
¢ A MultilnputPane object is used by the controller N

to allow the user to enter multiple items of data
about a person.

* A comparator object of the appropriate kind is Person
used by the address book object when sorting
itself.

*

AddressBook

collection: Person [] or Vector

count: int (only if an array is used for collection)
file: File

changedSincelLastSave: boolean

+

AddressBook()
getNumberOfPersons(): int
addPerson(String firstName, String lastName, String address,

String city, String state, String zip, String phone)
getFullNameOfPerson(int index): String
getOtherPersonInformation(int index): String[]
updatePerson(int index, String address, String city,

String state, String zip, String phone)

removePerson(int index)
sortByName()
sortByZip()
printAll(Q)
getFile(): File
getTitle(): String
setFile(File file)
getChangedSincelLastSave(): boolean
setChangedSincelLastSave(boolean changedSincelLastSave)

+ +

+

+ +

+ 4+ 4+ + A+ +

‘+doSortByZip()

AddressBookApplication

AddressBookController

+doAdd()
+doEdit()
+doDelete()
+doSortByName()

T

+doNew()

+doOpen()

+doSave()

+doSaveAs()

+doPrint()
+doOfferSaveChanges()

- fileSystem: FileSystem
- controller: AddressBookController

Person

+ main
+ quitApplication()

AddressBookGUI

- firstName: String
lastName: String
address: String

- city: String
state: String
zip: String
phone: String

controller: AddressBookController
addressBook: AddressBook
nameListModel: AbstractListModel
nameList: JList

addButton: JButton

editButton: JButton
deleteButton: JButton
sortByNameButton: JButton
sortByZipButton: JButton
newItem: JMenuItem

openItem: IMenuItem

saveIltem: IMenuItem

saveAsItem: IMenuItem

printItem: JMenuItem

quitItem: IMenuItem

+

Person(String firstName, StringlastName, String address,
String city, String state, String zip, String phone)

getFirstName(): String

getLastName(): String

getAddress(): String

getCity(): String

getState(): String

getZip(): String

getPhone(): String

+ o+ 4+ + + o+

AddressBookGUI(AddressBookController controller,
AddressBook addressBook)

getAddressBook(): AddressBook

setAddressBook(AddressBook addressBook)

reportError(String message)

update(Observable o, Object arg)

+

+ + + +

FileSystem

+ readFile(File file): AddressBook
+ saveFile(AddressBook addressBook, File file)

Author and Copyright Information: Though the pages are copyrighted, [hereby freely give
permission for their reproduction for non-commercial educational purposes. Russell C. Bjork

